Crystal structure of an active two-domain derivative of Rous sarcoma virus integrase.

نویسندگان

  • Z N Yang
  • T C Mueser
  • F D Bushman
  • C C Hyde
چکیده

Integration of retroviral cDNA is a necessary step in viral replication. The virally encoded integrase protein and DNA sequences at the ends of the linear viral cDNA are required for this reaction. Previous studies revealed that truncated forms of Rous sarcoma virus integrase containing two of the three protein domains can carry out integration reactions in vitro. Here, we describe the crystal structure at 2.5 A resolution of a fragment of the integrase of Rous sarcoma virus (residues 49-286) containing both the conserved catalytic domain and a modulatory DNA-binding domain (C domain). The catalytic domains form a symmetric dimer, but the C domains associate asymmetrically with each other and together adopt a canted conformation relative to the catalytic domains. A binding path for the viral cDNA is evident spanning both domain surfaces, allowing modeling of the larger integration complexes that are known to be active in vivo. The modeling suggests that formation of an integrase tetramer (a dimer of dimers) is necessary and sufficient for joining both viral cDNA ends at neighboring sites in the target DNA. The observed asymmetric arrangement of C domains suggests that they could form a rotationally symmetric tetramer that may be important for bridging integrase complexes at each cDNA end.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rous sarcoma virus integrase protein: mapping functions for catalysis and substrate binding.

Rous sarcoma virus (RSV), like all retroviruses, encodes an integrase protein that is responsible for covalently joining the reverse-transcribed viral DNA to host DNA. We have probed the organization of functions within RSV integrase by constructing mutant derivatives and assaying their activities in vitro. We find that deletion derivatives lacking the amino-terminal 53 amino acids, which conta...

متن کامل

A Crystal Structure of the Catalytic Core Domain of an Avian Sarcoma and Leukemia Virus Integrase Suggests an Alternate Dimeric Assembly

Integrase (IN) is an important therapeutic target in the search for anti-Human Immunodeficiency Virus (HIV) inhibitors. This enzyme is composed of three domains and is hard to crystallize in its full form. First structural results on IN were obtained on the catalytic core domain (CCD) of the avian Rous and Sarcoma Virus strain Schmidt-Ruppin A (RSV-A) and on the CCD of HIV-1 IN. A ribonuclease-...

متن کامل

Atomic resolution structures of the core domain of avian sarcoma virus integrase and its D64N mutant.

Six crystal structures of the core domain of integrase (IN) from avian sarcoma virus (ASV) and its active-site derivative containing an Asp64 --> Asn substitution have been solved at atomic resolution ranging 1.02-1.42 A. The high-quality data provide new structural information about the active site of the enzyme and clarify previous inconsistencies in the description of this fragment. The very...

متن کامل

A Possible Role for the Asymmetric C-Terminal Domain Dimer of Rous Sarcoma Virus Integrase in Viral DNA Binding

Integration of the retrovirus linear DNA genome into the host chromosome is an essential step in the viral replication cycle, and is catalyzed by the viral integrase (IN). Evidence suggests that IN functions as a dimer that cleaves a dinucleotide from the 3' DNA blunt ends while a dimer of dimers (tetramer) promotes concerted integration of the two processed ends into opposite strands of a targ...

متن کامل

Structure of the catalytic domain of avian sarcoma virus integrase with a bound HIV-1 integrase-targeted inhibitor.

The x-ray structures of an inhibitor complex of the catalytic core domain of avian sarcoma virus integrase (ASV IN) were solved at 1.9- to 2.0-A resolution at two pH values, with and without Mn2+ cations. This inhibitor (Y-3), originally identified in a screen for inhibitors of the catalytic activity of HIV type 1 integrase (HIV-1 IN), was found in the present study to be active against ASV IN ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 296 2  شماره 

صفحات  -

تاریخ انتشار 2000